GEM7000-Logo_REV
A Breakthrough in Blood Gas Testing

The only whole blood gas analyzer that detects hemolysis in real-time at the point of care. Improve patient safety, reduce inappropriate patient management, and boost lab efficiency. 2,4,5-7

GEM7000-Analyzer-web-singleflag
G7k Brochure NoAm for web

Addressing Hemolysis: A Critical Risk in Blood Testing

  • Hemolysis is the #1 source of preanalytical error and can impact potassium results—and patient care.1,2
  • Hemolysis impacts patient outcomes and operational efficiency2,4,10,14–19don’t let it go unnoticed.

The First Analyzer to Detect Hemolysis at the Point of Care

Key Features:

  • Ensures sample quality across common preanalytical errors (e.g., hemolysis, clots, bubbles) to help inform appropriate patient management decisions.
  • Lab quality blood gas analysis in point of care settings.
  • GEMweb Plus Custom Connectivity for identifying and reducing errors.

Improve Patient Care, Enhance Efficiency, and Reduce Costs2,4,6,7,10,14–19

Better outcomes for patients; improved efficiency for your lab.2,4,5–7

 

For Patients:

  • Accurate potassium results prevent misdiagnosis and ensure proper treatment.
  • Faster decisions lead to better outcomes and shorter hospital stays.

 

For Your Lab:

  • Reduce sample recollection and workflow disruptions.
  • Enhance team productivity and reduce errors with operator insights from GEMweb Plus.

Act Now to Reduce Inappropriate Patient Management and Elevate Your Lab’s Performance 2,4,5–7

The GEM Premier 7000 with iQM3 delivers the insight, continuous quality management, and improved efficiency your lab needs to stay ahead.

 

 

Request More Information

  1. Lippi G, von Meyer A, Cadamuro J, Simundic A-M. Blood sample quality. Diagnosis. 2018;6(1):25–31. doi:10.1515/dx-2018-0018.
  2. O’Hara M, Wheatley EG, Kazmierczak SC. The impact of undetected in vitro hemolysis or sample contamination on patient care and outcomes in point-of-care testing: a retrospective study. J Appl Lab Med. 2020;5(2):332–341. doi:10.1093/jalm/jfz020.
  3. Lippi G, Salvagno GL, Favaloro EJ, Guidi GC. Survey on the prevalence of hemolytic specimens in an academic hospital according to collection facility: opportunities for quality improvement. Clin Chem Lab Med. 2009;47(5):616–618. doi:10.1515/CCLM.2009.132.
  4. Phelan MP, Hustey FM, Good DM, Reineks EZ. Seeing red: blood sample hemolysis is associated with prolonged emergency department throughput. J Appl Lab Med. 2020;5(4):732–737. doi:10.1093/jalm/jfaa073.
  5. Wilson M, Adelman S, Maitre JB, et al. Accuracy of hemolyzed potassium levels in the emergency department. West J Emerg Med. 2020;21(6):272–275. doi:10.5811/westjem.2020.8.46812.
  6. Milutinović D, Andrijević I, Ličina M, Andrijević L. Confidence level in venipuncture and knowledge on causes of in vitro hemolysis among healthcare professionals. Biochem Med. 2015;25(3):401–409. doi:10.11613/BM.2015.040.
  7. Phelan MP, Ramos C, Walker LE, et al. The hidden cost of hemolyzed blood samples in the emergency department. J Appl Lab Med. 2021;6(6):1607–1610. doi:10.1093/jalm/jfab035.
  8. Nichols JH, Apple FS. Prevalence of hemolyzed results in acute care settings. J Appl Lab Med. 2023;8:431–434. doi:10.1093/jalm/jfac141.
  9. Tóth J, Oláh AV, Petercsák T, et al. Detection of haemolysis, a frequent preanalytical problem in the serum of newborns and adults. EJIFCC. 2020;31(1):6–14.
  10. Khedr S, Blake V, Erdogan E. Neonatal unit hemolysis rates from an academic medical center: A quality improvement project. Arch Path Lab. 2016;140(6):502–503. doi:10.5858/arpa.2015-0252-le.
  11. Lippi G, Fontana R, Avanzini P, Sandei F, Ippolito L. Influence of spurious hemolysis on blood gas analysis. Clin Chem Lab Med. 2013;51(8):1651–1654. doi:10.1515/cclm-2012-0802.
  12. Hawkins R. Measurement of whole-blood potassium—is it clinically safe? Clin Chem. 2003;49(12):2105–2106. doi:10.1373/clinchem.2003.027227.
  13. Werfen. GEM Premier 7000 with iQM3 Operators Manual. P/N 00000026407. Rev 00. Aug 2023.
  14. Dietzen DJ, Jackups R, Zaydman MA. Clinical implications of inaccurate potassium determination in hemolyzed pediatric blood specimens. Clin Chim Acta. 2024;15(557):117862. doi:10.1016/j.cca.2024.117862.
  15. Wu AHB, Peacock WF. Potential medical impact of unrecognized in vitro hypokalemia due to hemolysis: a case series. Clin Chem Lab Med. 2024;aop:1–5. https://doi.org/10.1515/cclm-2024-0351.
  16. Azman WNW, Omar J, Koon TS, Ismai TST. Hemolyzed specimens: major challenge for identifying and rejecting specimens in clinical laboratories. Oman Med J. 2019;34(2):94–98.
  17. Möckel M, Luppa PB. Why hemolysis detection should be an integral part of any near-patient blood gas analysis. J Lab Med. 2021;45(4–5):193–195. https://doi.org/10.1515/labmed-2021-0076.
  18. Nigro M, Valli G, Marchionne ML, et al. Is there a risk of misinterpretation of potassium concentration from undetectable hemolysis using a POCT blood gas analyzer in the emergency department? Medicina. 2023;59(66):1–11. https://doi.org/10.3390/medicina59010066.
  19. Centers for Disease Control and Prevention. National hospital ambulatory medical care survey: 2021 emergency department summary tables. Accessed August 21, 2024. Available at https://www.cdc.gov/nchs/data/nhamcs/web_tables/2021-nhamcs-ed-web-tables-508.pdf.

G7K LP Lab WW REV00 12.24